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Abstract--We review published methods  of testing for randomness  in 3D axial orientation data. We then propose 
a new test based on eigenvalue analysis. The test statistic is SI/S3, the ratio of  the largest to smallest eigenvalues 
of  the orientation tensor.  Critical values of  this statistic are tabulated and graphed for sample sizes between 5 and 
1000, for four confidence levels. The  calibrations of SI/S 3 were performed by a Monte-Carlo  sampling method.  
The same random samples  have been assessed using other  tests, as have some natural  orientation data samples.  
We conclude that the SI/S 3 test is easier to use and more  generally applicable than  previous tests, particularly for 
the common  type of data  in structural geology. 

INTRODUCTION 

A COMMON problem confronting the structural geologist 
when analysing orientation data is assessing the signifi- 
cance of a computed mean orientation. This difficulty 
arises primarily when dealing with nearly ' random'  data; 
that is data with only a weak preferred orientation. Such 
data arise, for example, from sampling of fold hinges, 
bedding planes and fault planes in m61ange terrains. 
Formally the question to be asked is: are the data a 
random sample of a uniform distribution of directions, 
or is there a significant preferred orientation? 

Although tests for uniformity are well developed for 
2D orientation data (e.g. Mardia 1972, pp. 132-137 and 
173-195), there are few simple convenient tests for 3D 
uniformity. The existing tests have a number  of disad- 
vantages: 
(1) some are parametric,  in the sense that they assume 

that the data have a certain form or distribution; 
(2) some are designed for large sample sizes; these may 

be acceptable in petrofabric studies but are impracti- 
cal for generally less abundant field measurements;  

(3) rotational variance may have to be taken into 
account, that is the test outcome may vary if the 
same data are rotated (in space or on an equal-area 
projection),  and 

(4) some tests involve tedious and time-consuming allo- 
cation of data to 'cells' on an equal-area projection, 
and the use of cumbersome tables to determine 
critical test values. 

Since computer  programs are now widely used in the 
analysis and plotting of 3D orientation data (e.g. Wood- 
cock 1973, Nuttall & Cooper  1978, Mancktelow 1981), it 
is desirable and convenient to design a rapid, simple test 
to be used in the context of such programs. In this paper 
we describe a test based on the eigenvalue method of 

orientation data analysis (Watson 1966, Woodcock 
1977), which is suitable for both large and small sample 
sizes. 

OVERVIEW OF AVAILABLE 
RANDOMNESS TESTS 

This review is not exhaustive, but indicates available 
tests commonly used, or suitable for use, by structural 
geologists. 

Tests using cells on an equal-area net 

In Winchell's zonal test (e.g. Chayes 1949) the equal- 
area net is divided into 10 concentric cells of equal area 
(Fig. la).  A uniform distribution (size N )  has an identi- 
cal expected frequency (=N/10)  in each cell. A X 2 
statistic can be calculated which measures deviations 
from uniformity, thus: 

10 
x2= (E -Oi)2/Ei, (1) 

i=l 

where Ei = expected frequency, O, = observed fre- 
quency, i = cell number. This value is to be compared 
with the tabulated X 2 statistic with 9 degrees of freedom. 
The test suffers from the disadvantage that it is not 
rotationally invariant; the test outcome depends on the 
location of the mean on the net. To obtain reproducible 
tests, the mean of a cluster or the pole to a girdle should 
first be rotated to the net centre. 

Further disadvantages of the test are: (a) it is best 
applied to samples with at least 50 and preferably more 
than 100 points and (b) it is biased, finding too many 
distributions significant compared with other tests. 

Flinn (1958) proposed a modified Winchell test with 
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Fig. 1. Three methods of subdividing an equal-area projection for counting data: (a) 10 cells for the Winchell test, (b) 2 cells 
for the modified Winchell test proposed by Flinn (1958), (c) 16 cells for the tests of Dudley et al. (1975). 

only two concentric cells of equal area (Fig. lb).  A 
similar X 2 statistic can be calculated and compared with 
tabulated X 2 for one degree of freedom. This simplifica- 
tion of the cell pattern overcomes the limitation on the 
number of data points to be tested, but the test is still 
rotationally variant and biased. 

In the Winchell general test, a square grid is thrown 
over the equal-area projection of data. The grid must 
have approximately as many squares as the number of 
data points. If the sample is random, the frequency of 
cells with various numbers of points is given by a Poisson 
distribution. Compatibility of the observed and expected 
frequencies is again made using a X 2 test. The test 
requires that the minimum number of points in a cell is 5, 
implying that the test is only suitable for large N. A 
further disadvantage is the possibility that the observed 
frequencies will fit a Poisson distribution without the 
sample being random, simply because the test does not 
attempt to relate the cell frequencies to the relative 
spatial positions of the cells (Chayes 1949). 

To overcome the problem of rotational variance, 
Dudley et al. (1975) proposed a test using an equal-area 
projection divided into 16 cells (Fig. lc). The number of 
points in each cell is counted. The maximum and 
minimum number  of points per cell (and the number of 
empty cells, if the minimum is zero),  are compared with 
tabulated significance limits. The test can be performed 
for most N values. The most significant result from the 
three tests is taken. Our trials indicate that the number 
of points per cell and the number of empty cells are 
rotationally variant. However ,  because the most signifi- 
cant result of the three tests is taken, the overall outcome 
of the test is not always affected. Not all the tests are 
applicable to very small N values, and they have the 
further disadvantage that the tables are somewhat 
complex to use. 

Tests using eigenvalues 

The analysis of orientation data using eigen- 
value/eigenvector methods is well known and is 
reviewed later. The method is rotationally invariant. 

Anderson & Stephens (1972) devised tests for distin- 
guishing a random sample of a uniform distribution from 
a cluster or a girdle in the data. If the largest eigenvalue 
S~ exceeds a test value (Fig. 2a) a preferred orientation 

in the form of a cluster exists. Similarly, if the smallest 
eigenvalue $3 is less than a critical value (Fig. 2b) there is 
a preferred orientation in the form of a girdle. The test 
values were estimated by Monte-Carlo methods, and for 
N > 100 are approximately given by 

S, = 1/3 + b / V ~  (2) 

$3 = 1/3 - b/X/N, (3) 

where b is a constant related to the significance level. 
Anderson & Stephens' tabulated test values are the basis 
of Fig. 2. 

Mardia (1972) has also proposed an eigenvalue test. 
Uniformity of the distribution implies $1 = S2 = 5 3  = 1/3. 
The statistic 

Su 15 3 
= 2--N ~' (Ai-  N/3) 2 (4) 

i=l 

where Ai = Six  N, measures deviations from uniformity. 
Su values in excess of a test value (11.07 and 15.09 at the 
95 and 99% confidence levels, respectively) indicate a 
non-random distribution. The critical values, unlike 
those of the Anderson & Stephens test, are independent 
of N. 

We will follow up this promising eigenvalue approach 
in this paper. 

Tests involving vector analysis 

By treating each item of orientation data as a unit 
vector on the sphere, a vector sum can be found (e.g. 
Fisher 1953). The larger the normalised vector sum, the 
stronger the preferred orientation. A set of test values 
has been erected (Mark 1973) which can be used to test 
against the hypothesis of randomness. In fact $1 and the 
normalized vector sum (R/N) are linearly correlated 
(Mark 1973) 

$1 = 1.24 R/N - 0.302, (5) 

and therefore Mark's test can be regarded as equivalent 
to the Anderson & Stephens S~ test against a cluster 
hypothesis. 

Parametric tests 

It is sometimes assumed that orientation data conform 
to a theoretical distribution such as the Fisher (spherical 
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Fig, 2. Critical values for the tests of Anderson & Stephens (1972) graphed against sample size: (a) St values to test for 
significant cluster, (b) S 3 values to test for significant girdle. 

normal) distribution or the Bingham distribution. In 
such cases the parameters specifying the distribution can 
be estimated from the sample and used to test against 
randomness. In the case of the Fisher distribution the 
parameter k is a measure of the strength or dispersion of 
the data. Mardia (1972) gives a test based on the 
Bingham distribution. 

Real geological data samples do not usually conform 
well to available ideal distributions, and the general use 
of this type of parametric test is likely to be misleading. 

EIGENVALUE ANALYSIS OF 
ORIENTATION DATA 

The orientation tensor method 

This analytical method is the basis for both the ran- 
domness test of Anderson & Stephens (1972) and the 
new test proposed by us. 

Individual observations are regarded as unit vectors 
defined by direction cosines li, mi, hi. The orientation 
matrix h is derived from the direction cosines thus 

2 ~ mini (6) b = mill • mi 
2 nili ~ nim~ ~ ni 

The normalized form of this matrix B = biN is the 
orientation tensor of Scheidegger (1965). The eigenvec- 
tors (v~, v2, v3) of this matrix correspond to three ortho- 
gonal 'principal axes' of the data sample. Axis v~ is an 
estimate of the mean direction of the data; v 3 is the pole 
to any girdle present in the data (Watson 1966). 

The eigenvectors (A~, A2, A3), associated with 
(v~, re, v3) respectively, describe the shape of the data 
sample (Watson 1966, Mark 1974, Woodcock 1973, 
1977). Since 

, ~ I + a 2 + A 3 = N  (7) 

then normalized eigenvalues S~ = Aj/N are related by 

S ~ + S 2 + S 3 =  1. (8) 

A data cluster has Si > $2 ~ $3 and a data girdle has 
$1 ~ $2 > $3. Although the eigenvalues can be used to 
describe the shape of any data sample, care is needed in 
their detailed interpretation, particularly with multi- 
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modal data or samples with non-orthorhombic sym- 
metry (Woodcock 1977). 

The eigenvalue ratio plot 

Graphical methods of further quantifying sample 
shapes were detailed by Woodcock (1977) and Harvey & 
Ferguson (1978). The most convenient graph is the 
Cartesian plot of S~/S 3 (abscissa) vs S1/$2 (ordinate) on 
either linear or logarithmic axes (e.g. Wallbrecher 1979, 
Williams & Spray 1979). This ratio plot (Fig. 3), on 
which each data sample plots as a point, is in some ways 
analogous to the widely used 'Flinn plot' for strain 
ellipsoids (Flinn 1962, 1978, Cobbold & Gapais 1979, 
Harvey & Laxton 1980). It can similarly be divided into 
fields of different shape of the data sample ranging from 
uniaxial girdles through samples with mixed girdle and 
cluster attributes to uniaxial clusters (Fig. 3). This shape 
factor can be expressed by the gradient K of a line 
joining the graph origin to the point representing the 
sample. On the logarithmic graph this is 

K = ln(St/Sz)/ln ($2/$3). (9) 

K ranges from zero (uniaxial girdles) to infinite (uniaxiai 
clusters). 

Complementary to the shape parameter is a parame- 
ter C, where 

C = In (S,/$3) (10) 

which expresses the 'strength' of the preferred orienta- 
tion in the data sample (Woodcock 1977). Strongly 
organized samples have larger C and plot further from 
the origin of the ratio graph (Fig. 3). A perfect uniform 
distribution of data would have C = 0 and would plot at 
the origin with $1 = $2 = $3 = 1/3. Random samples will 
also plot close to the origin and have low C values, 
suggesting that this parameter, S1/S 3 itself, might be 
used as a test statistic for randomness. This possibility is 
explored in this paper. 

S,/S, /I" \ f  \@ 

20- ~ 

I0" 2 ~@@~ 

5- 

Ishape parameter i 
~ \  I K= In (Sl/S2)] 

4-1n (~Ss) 
Jb ~o 5b"-S2/S3 

Fig. 3. The eigenvalue ratio graph for representing the shape and 
strength of samples of orientation data. 

The most convenient way of assessing the potential of 
the Sl/S3 test has been to use Monte-Carlo studies; 
essentially taking repeated random samples from a par- 
ent uniform distribution of directions in space. These 
studies, detailed below, have resulted in: 
(a) the conclusion that S1/S 3 is a natural and helpful test 

statistic for randomness, and 
(b) development of a convenient graph of critical test 

values of $1/$3 for various sample sizes and con- 
fidence levels. 

DEVELOPMENT OF THE SI/S 3 TEST 

A uniform distribution of directions 

A prerequisite for our random sampling method is a 
reliable method for generating a 'parent' uniform distri- 
bution in space. One previous approach (e.g. Starkey 
1977) has been to construct an array of points on a sphere 
according to the nodes of a geometric grid on the sphere 
surface. The grid is chosen so that for a large number of 
nodes the distribution approaches uniform. Every node 
is numbered and stored, and the array can then be 
samPled as necessary. We have used an alternative 
approach (suggested by Dr. W. H. Owens) which allows 
a random sample to be directly derived, without the 
intermediate storage of a large array representing 
uniformly distributed points. 

By definition, a uniform distribution of directions in 
space projects on a sphere as an array of points that has 
an equal density in any area of the sphere surface, 
irrespective of its size or position. In particular the 
density of points must be the same in all spherical caps 
centred at one pole of the sphere (Fig. 4a). The area A of 
a cap extending to a plunge (i.e. latitude) ~b ° on a sphere 
of radius r is 

A = 2¢rr2(1 - sin ~b). (11) 

Because we will consider only axial data, fully rep- 
resented on a hemisphere, we compare the area of this 
cap to the total area of the hemisphere 

A0 = 2~'r 2. (12) 

Hence, the area of the cap relative to that of the hemi- 
sphere is 

A/Ao = 1 - sin &. (13) 

For a uniform density of points on a hemisphere, the 
number of points n in any spherical cap must also be 
related to the total number of points no by 

n/no = 1 - sin ~b. (14) 

We can obtain a uniform density of plunge values by 
sampling uniformly for n/no in the range 0 to 1 and 
transforming to plunge using: 

~b = sin -1 (1 - n/no). (15) 

This transformation is graphed in Fig. 4(b). It has the 
effect of shifting points away from the pole, where there 
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Fig. 4. Derivation of a uniform sample on a hemisphere. See text for 
explanation. 

would otherwise be a cluster if sampling were uniform 
for ~b over the range 0-90 °. 

No correction is needed for trend values (0) which can 
be sampled directly over the range 0-360 ° . 

The validity of the above procedure was checked by 
first generating 'uniform' test samples of various sizes. 
The eigenvalues of these samples are shown in Fig. 5. At 
low sample sizes the data are clearly non-uniform, pro- 
ducing weak uniaxial girdles (Sl = $2) with the chosen 
point grid pattern. As sample size increases however, 
the three eigenvalues all converge on 1/3, the theoretical 
value for a uniform distribution, and the eigenvalue 
ratios approach 1.0. These results give confidence in the 
validity of the sampling procedure, though we must 
emphasize that our random sampling method does not 
depend on producing a perfectly uniform parent sample. 

Sampling procedure 

Each sample is produced directly by random sampling 
of the parameters 0 (from 0 to 360 °) and n/no (from 0 to 
1), with transformation of n/no to ~b by equation (15) 
above. A FORTRAN subroutine RANSAM performs 
this procedure using the random number generator pro- 
vided by the CAMLIB library on the University of 
Cambridge IBM 3081 computer. RANSAM is the heart 
of a larger program RANSACK which provides the 
following output for each sample: 
(a) eigenvectors and eigenvalue parameters and 
(b) results of tests on the sample using the methods of 

Winchell, Dudley et al., Mardia and Anderson & 
Stephens. 
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Fig. 5. Normalized eigenvalues (Sj + $2 + $3 = 1) and eigenvalue 
ratios for 'uniform' samples with various numbers of points, derived 

using the method in Fig. 4. 

Listings of the RANSACK program are available from 
US. 

Our Monte-Carlo sampling plan was designed to pro- 
duce usable critical values of the St/S3 statistic for the 
range of sample sizes commonly used in field geology. 
We chose sample sizes (N) of 5, 10, 20, 50,100, 200,500 
and 1000 points, and took 1000 samples of each size. This 
number was determined by the available computing 
resources, but has resulted in an accuracy of the S]/$3 
estimates which is more than adequate for most applica- 
tions. 

Characteristics of the Monte-Carlo samples 

The main characteristics of the 1000 samples of each 
sample size (N) can be represented on an eigenvalue 
ratio graph (St/S2 vs S~/$3) and on histograms of the 
'strength' parameter (St/S3) and 'shape' parameter (K). 
Typical examples of these plots for N = 50 are shown in 
Fig. 6. The variation with N of the mean, standard 
deviation and skewness of the sampling distributions for 
In (S1/S3) and In K is shown in Fig. 7. 

The random samples have shapes which range across 
the complete spectrum from uniaxial girdles (zero K) to 
uniaxial clusters (infinite K). The average shape is close 
to K = 1, and In K is distributed symmetrically about this 
value (skewness ~ 0, Fig. 7a). The standard deviation of 
In K is rather similar (---- 1.0) for different N, correspond- 
ing to 1 ° bounds of K = 0.368 and 2.72. There is a very 
small tendency for the mean shapes to be on the girdle 
side of K = 1, more marked at low N, and for the 
skewness to be negative (i.e. a tail in the cluster field). 
These minor effects must be attributed to the sampling 
procedure. They are small enough to be ignored. 

Unlike the shapes of the samples, their strengths, 
measured by $1/$3, are strongly dependent on sample 
size N (Fig. 7b). Both the mean and standard deviation 
of the in (SI/$3) distributions decrease with increasing 
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N. In other  words, the larger random samples plot closer 
to the origin of the eigenvalue ratio graph. 

An important  feature of the ratio graphs (e.g. Fig. 6a) 
is the tendency of the $1/$3 lines to form natural density 
contours for the point scatter. This suggests that $1/$3 is 
a rather natural measure of sample strength and there- 
fore of randomness. 

Derivation of critical $1/$3 values 

To derive critical test values of the SJS 3 statistic we 
must focus on the positive tail of histograms such as that 
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Fig. 7. Variation with sample size of the mean,  standard deviation and 
skewness of the sampling distributions for (a) shape parameter (In K) 
and (b) strength parameter  (In S]/$3). Examples of the sampling 

distributions are shown as histograms in Fig. 6. 

in Fig. 6(c). We can say with 99% confidence that an 
unknown sample (in this case with N -- 50) is a random 
sample of a uniform distribution if it has SI/S3 less than 
about 2.35, the value that just includes 99% of samples 
on Fig. 6(c). 

Critical S]/$3 values have been estimated in a similar 
way for all other  sample sizes and graphed for confidence 
levels of 90%, 95%, 97.5% and 99% (Fig. 9). In practice, 
each critical value was interpolated from the best-fit 
curve to a cumulative plot of the In (S1/$3) data (Fig. 8). 
The tails of these distributions on probability paper 
approximate to straight lines. 
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Fig. 8. Cumulative probability plot of the upper tail of the In (St/S3) 
histogram in Fig. 6(c), showing the method of estimating a critical S~/$3 

value and its error. 
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The critical values are presented in an alternative 
form in Table 1, in which values for samples sizes 
between those in the Monte-Carlo runs have been read 
from the graph in Fig. 9. 

The accuracy of each critical S1/S 3 estimate was taken 
as the width of the envelope to the In (S1/$3) data on the 
cumulative plot (Fig. 8). A more sophisticated approach 
was not thought to be justified by the amount of data 
available. By any assessment, the errors are rather small 
(Fig. 9 inset, Table 1), barely plottable on the graph of 
critical SJS3 values (Fig. 9) except at very low sample 
sizes. We suggest therefore that Fig. 9 can be used with 
considerable confidence to assess randomness using the 
St/S3 test. 

PRACTICAL PROCEDURE FOR USING 
THE S~/$3 TEST 

The following procedure is illustrated by analysis of a 
real data sample in Fig. 10. 
(1) Express each direction in the sample as a set of three 

direction cosines. If the data are in the form of trend 
and plunge, the formulae are: 

1 - cos (plunge) . cos (trend) 
m - cos (plunge) . sin (trend) 
n -~ sin (plunge). 

Table 1. Critical values of the S~/$3 statistic for various sample sizes 
(N) and confidence levels 

Numbers in bold face were derived directly from our Monte-Carlo 
tests; the remainder were interpolated from larger scale (and therefore 
more accurate) versions of the curves in Fig. 9. The indicated errors are 
only approximate. They are total errors, e.g. 1.0 indicates an error of 
_+ 0,5 in the Si/S 3 value. 
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raw data 
plunge trend 

22 053 
44 057 
09 046 
72 069 
20 334 
36 085 
61 344 
59 016 
39 020 
39 046 
71 041 
86 009 

O4 

oT 

step I 

direction cosines 
1 m n 

0.558 0.741 0.375 
0.392 0.603 0.695 
0.686 0.711 0.156 
0.111 0.289 0.951 
0.845 -0.412 0.342 
0.071 0.806 0.588 
0.466 -0.134 0.875 
0.495 0.142 0.857 
0.730 0.266 0.629 
0.540 0.559 0.629 
0.246 0.214 0.946 
0.069 0.011 0.998 

step 2 
f 

equal area _ 

I0 

eigenvalue ratio graph 

< 

I l , , i , i , ,  
S=/$3 5 io 

products 
for each set of 
direction cosines 
~ I  2 im in 

ml m 2 mn step 3 
nl nm n 2 

sum of products 
: orientation tensor 

eigenvectors 
h 

1 m n plunge trend I/~ 

v 1 : 0.480 0.382 0.790 : 52 039 
v 2 = 0.007 0.898 -0.439 = 26 270 
V 3 -0.878 0.216 0.428 = 25 161 

and eigenvalues . A 

I 
~1 : 9 . 0 3 2  S1 = Xl/N = 0 ' 7 5 3 I / I  
k2 1.746 S 2 X2/N o.146 K 
k3 1.222 S 3 X3/N 0 . I 0 2 I ~  

d 
[s. /s~ = 5,173 I , , ratios of $2/S 3 1.429 

of SI /Ss 

3.018 1.435 
1.435 2.786 
2.957 2.152 

eigenvalues I s' 's3 ° 7.389 J 

I 905 955 97.5~ 
(S1/S3)N=I2 = 4.45 5.50 6.55 

t e s t  sample I . . . .  dam at 991 I 
Ilevel b u t  n o n - r a n d o m  a t  

result I lo . . . . . .  ~id .... l eve ls  

2.957 J 
2.152 
6.195 

995 

8.10 

Fig. 10. Stepwise procedure for the SI/S 3 test using real bedding pole data from part of the Batinah M61ange, Oman 
(Robertson & Woodcock 1983). See text for explanation. 

(2) Compute the products for each direction-cosine set. 
(3) Sum the products over the whole data sample to give 

the orientation tensor (equation 6 above).  
(4) Compute the eigenvectors and eigenvalues of this 

matrix. (If the sample turns out to be non-random, 
the eigenvectors will give estimates of the cluster 
and girdle orientations in the sample.) 

(5) Compute the eigenvalue ratios, particularly the 

ratio of the largest to smallest eigenvalue ( S l / S  3 = 

A1/A3). If the data are non-random they can usefully 
be represented as a point on an eigenvalue ratio 
graph, In ($I/$2) vs In (Sz/S3). 

(6) Refer to Fig. 9 or Table 1 and read off the critical 
$1/$3 value for the appropriate sample size and 
required confidence level. Note  that for a small 
sample size a 95% confidence level is appropriate. 
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(7) If the computed value is less than the test value, the 
data sample cannot be distinguished from a random 
sample at this confidence level. 

Steps 1-4 can be performed on a hand calculator (see 
algorithm by Cheeney,  in press), but are best done by 
computer.  We use a F O R T R A N  program STATIS 
(Woodcock 1973), listings of which can be obtained 
from us. Published routines to perform eigenvalue 
analysis are available (e.g. Davis 1973, pp. 166-167) and 
most computer  systems have standard routines for deriv- 
ing eigenvalues and eigenvectors of a matrix. Given 
these facilities, the S~/$3 test for randomness is very 
rapid, and arises naturally out of the now standard 
eigenvalue analysis of orientation data (Woodcock 1973, 
1977, Nuttall & Cooper  1978, Mancktelow 1981, 
Cheeney in press). 

exactly 1% at the 99% level. All tests depart  from this 
ideal similarity. None show a strong correlation of per- 
formance with sample size (Fig. l l a )  and therefore the 
results can be summarized on the histogram in Fig. 
11(b). 

The Mardia and Anderson & Stephens tests show the 
closest match to the SJS3 test, probably because they are 
also based on eigenvalues. However  they tend to class 
slightly more samples as significant. The Dudley et al. 
test gives different results for raw data and for data 
rotated so that the sample mean or girdle pole is at the 
net centre. The test on rotated data predicts fewer 
significant samples than the S~/$3 test. The Winchell test 
classes far too many samples as significant. 

Comparison of tests: real field data 

DISCUSSION 

Comparison of tests: Monte-Carlo samples 

The random sampling program RANSACK outputs 
for each sample the eigenvalues needed for our S~/$3 t e s t  

and for the Mardia and Anderson & Stephens tests. It 
also carries out the cell tests of Winchell and Dudley et 
al. and outputs a yes/no result. The results of all tests are 
compared on Fig. 11 for 95 and 99% confidence levels. A 
test which on average gives similar results to the SJS3 
test would, for every sample size in Fig. l l ( a ) ,  class 
exactly 5% of samples as significant at the 95% level and 

The various randomness tests have also been applied 
to 20 sets of real field data. All these sets appear close to 
random by visual inspection on an equal-area net. The 
results (Fig. l l c )  confirm the relative bias of the tests 
established on the Monte-Carlo samples: the Mardia 
and Anderson & Stephens tests give results comparable 
with the S~/$3 test: the Winchell test classes too many 
samples as significant and the Dudley et al. test too few. 

The majority of real data sets come from the following 
two areas. 
(a) The Mamonia Complex, SW Cyprus (Robertson & 

Woodcock 1979): bedding pole data from non- 
metamorphic sedimentary sequences deformed at a 
shallow structural level. 

,o i \  o 
i ~ / Winchell 

io i x . /  
t ~ . ~  ~ ' - - - - . . ~ . ~ "  "99~ 

O~ --~" , ~ . . . .  

4 i ~ "  Anderson/Stephens St 

_~ 21 " ~ ' ~ "  -"" - -  "-'-----"'-- - ' ~ ' 9 9 %  
oi 

o 

= 6 2 - - - - - - ' ~  . . . . .  .___.__,.__.__., _._____ ,......---~" 95% 

~ 4t Anderson/Stephens S s 
" -  2 ~ .  ~ .  _____--- • --.._.~ . . . . .  _ ,  "99% 
~ 0 1  ~ ,, 

"6 6~ / ~ . . . .  / . ~ . 9 ~ %  
! " ~ "  . 

Mardia 

~ . ~ ' ~  . . . . .  - - - - - - - ' - - - - - " 9 9 %  

8 ~t95% ] 

I / 6 t "-,....,.. raw data 
4 ' ' - - - ~ ' ~ ' -  . . . . .  : ' = ~ : ~ e "  et al t /  "'"'~" ~..-."'~o t o t, d doto )' ' 

0 ~ - - - ~ - - - - m  . . . . .  t=-=--'- ~ "~ * 
~b 2'o ~o ,6o ebo ~ 600 

number of points 

• 99% 95% 

Anderson/Stephens $3 
~11!!:i i~i :::: .: ;:.~: ~i Mordio b 

Dudley et at. (raw data) 
~ : ,  ~:: ; , ( ' bud ley  et ol. (rotated data) 

, , , , , , , , , , , , , , , , , , 

0 5 I0 15 
% of significant samples 

~ j l  99% 95% 

a)~--s, ) 

et aL Crototed datal 

o 5 io 15 
number of significant samples 

Fig. 11. The number of samples classed as significant by various tests at 95 and 99% confidence levels, (a) as a function of 
sample size (based on 1000 Monte-Carlo s a m p l e s  f o r  each size indicated), (b) averaged over all 8000 Monte-Carlo samples 

and (c) for 20 real data samples (see text for discussion). 
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(b) The Batinah melange, Oman (Robertson & Wood- 
cock 1983): bedding data from an olistostrome and 
slide-block m61ange of ophiolitic and sedimentary 
debris. 

We have also applied the test to other m61ange units, to 
slump fold hinge lines, and to joints in an igneous body 
and a conglomerate. These initial applications give some 
idea of the range of field geological situations in which 
near-random data occur. 

Sampling and sample shape 

Any tests for randomness in orientation data depend 
on unbiased sampling of data in the field. The approp- 
riate sampling plan should be carefully considered (e.g. 
Davis 1973, Cheeney in press). 

One problem in applying the St/S3 test is that the 
eigenvector method cannot cope adequately with certain 
types of multimodal data (Woodcock 1977). For this 
reason the test, as with most other tests reviewed here, 
could wrongly return a random result from a dataset 
consisting of several individually significant modes or 
superimposed samples. This problem frequently arises 
with joint data and structures in multiply deformed 
areas. For this reason we recommend inspecting the 
form of the data on an equal-area plot before accepting 
the results of any randomness test. If several modes 
appear to be present then some independent test for 
multimodality (e.g. Bailey 1975) should be made, 
together with some attempt to separate data from the 
various modes (Kohlbeck & Scheidegger 1977) before 
proceeding further. 

ADVANTAGES OF THE $1/$3 TEST 

The comparisons above suggest that only the Winchell 
randomness test gives grossly misleading results. Other 
available tests give results approximately consistent with 
our Monte-Carlo tests. We suggest the following advan- 
tages for the S1/$3 test over these other tests. 
(1) It is rotationally invariant, unlike the various cell 

tests. 
(2) It is independent of the 'shape' of the sample. The 

two Anderson & Stephens methods test against the 
hypotheses of a uniaxial cluster and a uniaxial girdle, 
respectively. Most randomly generated samples of a 
uniform distribution fall between these two 
extremes (Fig. 6). 

(3) S1/S3 is a natural 'strength' parameter, in that lines 
of equal SI/S3 tend to delimit fields of equal point 
density on the ratio plot of the Monte-Carlo samples 
(Fig. 6). 

(4) The $1/$3 statistic is simply calculated during the 
now widely used eigenvalue method of orientation 
data analysis. 

(5) The test graph (Fig. 9) has proved to be a rapid and 
practical visual method. Table 1 can be used for 
more precise testing. 
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